eCircuit  Center 
Error Budget Analysis

About SPICE | SPICE Basics | Running SPICE | CIRCUIT COLLECTION
SPICE Commands | SPICE Downloads | About | Contact | Home

Amplifer Noise Analysis

Inverting Amplfier


pic

 

A key aspect of precision amplifier design must answer this question - how will noise impact the accuracy? While many application notes show the complex equations, few break them down or create an analysis tool for your own designs. This topic provides

To verify the method, we'll calculate the noise as found in "Noise Calculations of Op-Amp Circuits", Example 1, Application Note by Renesas.

For tutorials on Key Concepts and other circuits, goto EBA Series

 

OFFSET AND GAIN ERRORS

We'll start with basic error definitions of an amplifier block. What are Offset and Gain Errors?

pic


QUESTION: Is noise an Offset or Gain Error? Because noise does not scale with the input signal, it's classified as an Offset Error. Further, noise is uncalibratable, so it falls under the "Noise, Drift, etc." category.

 

MAX ERROR BUDGET

The max budget (target spec) for the amplifier has been chosen as:

AMPLIFIER NOISE

Schematic with Errors

pic

Device Errors

We'll analyze noise errors only for this topic. (For DC Errors check out Amp1 Error Analysis.)

Description Error
NOISE ERRORS  
U1, Input Voltage Noise, en (white and 1/f noise)
U1, Input Current Noise, inp (white and 1/f noise)
U1, Input Current Noise, inn (white and 1/f noise)

Rp, Resistor Noise, er
R1, Resistor Noise, er
R2. Resistor Noise, er
15 (nV/√Hz),  82 nV*√1Hz
0.35 (nA/√Hz),  8 nA*√1Hz
0.35 (nA/√Hz),  8 nA*√1Hz

    1,000
    1,010
101,000

 

Conditions and Assumptions

Temperature

Amplifier

Errors

 

RESISTOR NOISE (THEORY REFRESH)

NOISE DENSITY
Resistors create a voltage noise density per root Hz given by
pic
where
   k = 1.38e−23 J/K is Boltzmann's constant
   T = absolute temperature in kelvins (298K at 25C)
   R = resistance in ohms.

RMS NOISE
The total RMS noise in a given bandwidth can be predicted by
pic
where
   fbw - cutoff frequency of the bandwidth
   Kbw - equivalent noise bandwidth multiplier
      (Kbw = 1.57 for a single pole Low-Pass response)

PEAK NOISE
The peak noise becomes
pic
The multiplier 3 expands the rms coverage of 1σ (68.7% of samples) to 3σ (99.7% of samples).

     NOTE: We'll add the noise calculations above to our Error Analysis steps.

 

RESISTOR NOISE (Rp)

NOISE DENSITY, RMS, PEAK
Check out the equations already covered in "Resistor Noise (Theory Refresh)" above.

SENSITIVITY
How does the resistor noise source impact vo? Because er appears at U1's positive input, the non-inverting gain applies.
pic
Let's run through the noise calculations.

Description Noise
Error Source: e

  e = √(4*k*T*R)
R = 1000 ohms

Convert to noise density:
er = √( 4*1.38e-23*298*1000)
     = 4.1 nV/√Hz
Pick Analysis Node: Va vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = R2/R1+1
  = 101k/1.01k+1 = +101
Calc peak Noise Error at Analysis Node
  Voffset = e * √(fbw*Kbw) * 3 * S
 
Voffset
 = er*√(fbw*Kbw)*3*S
 = 4.1 nV*√(49kHz*1.57)*3*101
 = 344 uVpk
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 344 uVpk / -100
 = -3.4 uVpk    (1.1 uVrms)

 

RESISTOR NOISE (R1)

NOISE DENSITY, RMS, PEAK
Check out the equations already covered in "Resistor Noise (Theory Refresh)" above.

SENSITIVITY
How does R1 noise source impact vo? Because er appears in the series with R1, the inverting gain applies.
pic
Let's run through the noise calculations.

Description Noise
Error Source: e

  e = √(4*k*T*R)
R = 1010 ohms

Convert to noise density:
er = √( 4*1.38e-23*298*1010)
     = 4.1 nV/√Hz
Pick Analysis Node: Va vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = -R2/R1
  = 101k/1.01k = -100
Calc peak Noise Error at Analysis Node
  Voffset = e * √(fbw*Kbw) * 3 * S
 
Voffset
 = er*√(fbw*Kbw)*3*S
 = 4.1 nV*√(49kHz*1.57)*3*(-100)
 = -343 uVpk
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = -343 uVpk / -100
 =  3.4 uVpk    (1.1 uVrms)

 

RESISTOR NOISE (R2)

NOISE DENSITY, RMS, PEAK
The noise equations were already covered above in "Resistor Noise (Theory Refresh)".

SENSITIVITY
The gain from er of R2 to vo may not be obvious. Because it appears in the series with R2, the gain is unity.
pic

Running through the calculations, we get

Description Noise
Error Source: e

  e = √(4*k*T*R)
R = 101k ohms

Convert to noise density:
er = √( 4*1.38e-23*298*101k)
     = 41 nV/√Hz
Pick Analysis Node: Va vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = 1
Calc peak Noise Error at Analysis Node
  Voffset = e * √(fbw*Kbw) * 3 * S
 
Voffset
 = er*√(fbw*Kbw)*3*S
 = 41 nV*√(49kHz*1.57)*3*1
 = -34 uVpk
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = -34 uVpk / -100
 =  0.34 uVpk    (0.1 uVrms)

 

OP AMP NOISE (THEORY REFRESH)

Two random behaviors make up the op amp input voltage noise: white noise (ew) and 1/f noise (ef). They sum together as Root Sum Square (RSS) for a total input noise (en).

pic

WHITE NOISE DENSITY
Op amps create a fixed noise density (ew) in volts per root Hz.

NOISE RMS
The total RMS of white noise can be predicted by
pic
where
   fbw - cutoff frequency of the bandwidth
   Kbw - equivalent noise bandwidth multiplier
      (Kbw = 1.57 for a single pole Low-Pass response)

 

1/f NOISE DENSITY
Op amps also create a 1/f or flicker noise that falls at a constant rate per square root of frequency
pic
where Kf is the constant fall rate for the device.

Kf is defined by the white noise and 1/f corner frequency.
pic

However, it's easily approximated by reading the noise density (en) at the lowest frequency (fx) on the 1/f plot.
pic

NOISE RMS
The total RMS of flicker noise can be calculated by
pic
where
   fL, fH - lower and upper frequencies of analysis
   Kf - the 1/f constant for the device

PEAK NOISE
The peak noise for an RMS level becomes
pic
The multiplier 3 expands the rms coverage of 1σ (68.7% of samples) to 3σ (99.7% of samples).

     NOTE: We'll add the noise calculations above to our Error Analysis steps.

 

INPUT VOLTAGE NOISE (en)

NOISE PLOT
Read the noise levels from the plot (Op Amp ISL28136).

pic

NOISE DENSITY, RMS, PEAK
Check out the equations already covered in "Op Amp Noise (Theory Refresh)" above.

SENSITIVITY
How does the input noise source impact vo? Because en appears at U1's positive input, the non-inverting gain applies.
pic
Let's run through the noise calculations.

Description White Noise 1/f Noise
Error Source: e Read en from plot at highest frequency

en = 15 nV/√Hz
Read en at lowest frequency fx and calculate

Kf = en(fx) * √fx
 = 85nV/√Hz * √(1 Hz)
 = 85nV
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = R2/R1+1
  = 101k/1.01k+1
  = +101
S = 101
Calc peak Noise Error at Analysis Node Voffset
 = en*√(fbw*Kbw)*3*S
 = 15 nV*√(49k*1.57)*3*101
 = 1270 uVpk
Voffset
 = Kf* √ln(fH/fL) *3*S
 = 85nV * √ln(49k/1)*3*101
 = 93 uVpk
Calc Gain from
Vin to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Ka = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI =
    voffset / Ka
voffset_RTI
 = 1270 uVpk / -100
 = -12.7 uVpk    (4.2 uVrms)
voffset_RTI
 = 93 uVpk / -100
 = -9.3 uVpk  (0.31 uVrms)

 

INPUT CURRENT NOISE (inp)

NOISE PLOT
Read the levels from the plot (Op Amp ISL28136).

pic

NOISE DENSITY, RMS, PEAK
Check out the equations already covered in "Op Amp Noise (Theory Refresh)" above.

SENSITIVITY
How does the positive input current noise impact vo? Current inp flows into RP creating a voltage that is then amplified by the non-invering gain.
pic

Running through the calculations, we get

Description White Noise 1/f Noise
Error Source: e Read in from plot at highest frequency

inp = 0.35 nA/√Hz
Read in at lowest frequency fx and calculate

Kf = in(fx) * √fx
 = 8nA/√Hz * √(1 Hz)
 = 8nA
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = Rp*(R2/R1+1)
  = 1000*(101k/1.01k+1)
  = +101k
S = 101k
Calc peak Noise Error at Analysis Node Voffset
=in*√(fbw*Kbw)*3*S
=0.35nA*√(49k*1.57)*3*101k
=30 uVpk
Voffset
= Kf* √ln(fH/fL) *3*S
= 8nA*√ln(49k/0.1)*3*101k
= 8.8 uVpk
Calc Gain from
Vin to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Ka = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI =
    voffset / Ka
voffset_RTI
 = 30 uVpk / -100
 = -0.3 uVpk    (0.1 uVrms)
voffset_RTI
 = 8.8 uVpk / -100
 = -0.09 uVpk  (0.03 uVrms)

 

INPUT CURRENT NOISE (inn)

NOISE PLOT
Read the levels from plot for current noise inp.

NOISE DENSITY, RMS, PEAK
Check out the equations already covered in "Op Amp Noise (Theory Refresh)" above.

SENSITIVITY
The impact of inn is not so obvious. Working through the equations you find the gain similar to a transimpedance amplifier config.
pic

Running through the calculations, we get

Description White Noise 1/f Noise
Error Source: e Read in from plot at highest frequency

inp = 0.35 nA/√Hz
Read in at lowest frequency fx and calculate

Kf = in(fx) * √fx
 = 8nA/√Hz * √(1 Hz)
 = 8nA
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo/er
  = -R2
  = -101k
S = -101k
Calc peak Noise Error at Analysis Node Voffset
=in*√(fbw*Kbw)*3*S
=0.35nA*√(49k*1.57)*3*101k
=30 uVpk
Voffset
 = Kf* √ln(fH/fL) *3*S
 = 8nA*√ln(49k/1)*3*101k
 = 8.8 uVpk
Calc Gain from
Vin to Analysis Node:
  Ka = Va / Vin
Ka = vo/vin
 = -R2/R1
 = -100
Ka = -100
Calc Error RTI
(Referred-to-Input):
  voffset_RTI =
    voffset / Ka
voffset_RTI
 = 30 uVpk / -100
 = -0.3 uVpk    (0.1 uVrms)
voffset_RTI
 = 8.8 uVpk / -100
 = -0.09 uVpk  (0.03uVrms)

 

SUMMARY

Let's review the Noise Errors from the Offset Error sheet.

Description |uVpk| uVrms
NOISE ERRORS    
U1 en (white noise)
          (1/f noise)
U1 inp (white noise)
          (1/f noise)
U1 inn (white noise)
          (1/f noise)
12.7
0.9
0.3
0.1
0.3
0.1
4.22
0.31
0.10
0.03
0.10
0.03
Rp er (thermal noise)
R1 er (thermal noise)
R2 er (thermal noise)
3.4
3.4
0.3
1.14
1.14
0.11

Total noise must be calculated using Root Sum Squares (RSS).

Does the Total Noise Error (peak) fly under the Max Error Budget?

NOISE VS. APP NOTE?

 

EBA WITH EXCEL

An Excel file was created to implement the error budget analysis.

      pic

3 Worksheets

Worksheet Enter Calculate
CIRCUIT CALC Circuit values Signal gains, levels and error sensitivities (S)
OFFSET Offset error sources Offset errors and totals
GAIN Gain error sources Gain errors and totals

While 3 worksheets seems over-the-top for smaller circuits, you'll find a big advantage when analyzing more complex circuits or multi-stage systems!
 

Try the Excel file:  amp1-noise.xlsx
  Right Click on the filename, select "Save link as...".

TRY IT!

REFERENCES

  1. Noise Calculations of Op-Amp Circuits, Application Note, Renesas Electronics.
  2. ISL28136, Precision, Rail-to-Rail, Op Amp Datasheet, Renesas Electronics.
  3. Tolerance Design of Electronic Circuits, Robert Spence, Randeep Soin, World Scientific Publishing.

 

For in-depth tutorials and more circuits, go to EBA Series