eCircuit  Center 
Error Budget Analysis

About SPICE | SPICE Basics | Running SPICE | CIRCUIT COLLECTION
SPICE Commands | SPICE Downloads | About | Contact | Home

Basic Amplifier

Non-Inverting Op Amp


pic

 

A basic op amp config provides a great intro to Error Budget Analysis! We'll do a teardown of this critical and challenging analysis. You'll get

 

For tutorials on Key Concepts and other circuits, goto EBA Series

For the same magnitiude of gain, which has the larger errors, the Non-Inverting (K = +5) versus the Inverting (K = -5) config?

 

OFFSET AND GAIN ERRORS

We'll start with basic error definitions of an amplifier block. What are Offset and Gain Errors?

pic

 

MAX ERROR BUDGET

The max budget (target spec) for amplifier has been chosen as:

AMPLIFIER

Schematic with Error Sources

pic

Error Sources

Description Initial Drift
OFFSET ERRORS    
voff, Input Offset Voltage
ibn, Input Bias Current (Pos)
ibp, Input Bias Current (Neg)
1 mV
10 nA
10 nA
10 uV / C
1 nA / C
1 nA / C
GAIN ERRORS    
R2_Tol
R1_Tol
0.1 %
0.1 %
100 ppm / C
100 ppm / C

 

Conditions and Assumptions

Temperature

Amplifier

Errors

 

OFFSET ERRORS

The Non-Inverting Amplfier nicely showcases the EBA method. You can modify the analysis for the Inverting or other Op Amp configurations.

While the steps may seem more detailed than needed for simpler errors, the value of creating a systematic approach will pay off when analyzing more complex, multi-stage designs.
 

INPUT OFFSET VOLTAGE

Because voff is modelled as voltage in series with the pos input, it gets amplified just like the signal gain for Vin.

Description Initial Errors Drift Errors
Error Source: e voff = 1mV voff_TC = 10uV/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo / voff
  = R2/R1+1
  = 5
S = 5
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 1mV * 5
 = 5mV
Voffset
 = 10uV/C * 30C * 5
 = 1.5 mV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vo
 = R2/R1+1
 = 5
Ka = 5
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 5mV / 5
 = 1mV
voffset_RTI
 = 1.5mV / 5
 = 0.3mV

 

INPUT BIAS CURRENT (NEG)

The op amp acts like a transimpedance amplifier converting the current ibn to a voltage vo = ibn*(-R2).

Description Initial Errors Drift Errors
Error Source: e ibn = 10nA ibn_TC = 1nA/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo / ibn
  = -R2
  = -40000
S = -40000
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 10nA * -40000 
 = -0.4mV
Voffset
 = 1nA/C * 30C * -40000 
 = -1.2mV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vo
     = R2/R1+1
     = 5
 
Ka = 5
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = -0.400mV / 5
 = -0.080mV
voffset_RTI
 = -1.200mV / 5
 = -0.240mV

 

INPUT BIAS CURRENT (POS)

Easy to analyze - ibp flows into Rs creating a voltage, then gets amplified by the non-inverting signal gain.

Description Initial Errors Drift Errors
Error Source: e ibp = 10nA ibp_TC = 1nA/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo / ibp
  = Rs*(R2/R1+1)
  = 500*5
  = 2500
S = 2500
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 10nA * 250
 = 0.025mV
Voffset
 = 1nA/C * 30C * 2500
 = 0.075mV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vo
     = R2/R1+1
     = 5
 
Ka = 5
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 0.025mV / 5
 = 0.005mV
voffset_RTI
 = 0.075mV / 5
 = 0.015mV

 

GAIN ERRORS

Gain errors often require more effort when calculating the Sensitivity S. You need to write the gain equation and then apply calculus (Difference Method) to find S.

RESISTOR R2
 

Description Initial Errors Drift Errors
Error Source: e R2_Tol
 = 0.1%
R1_TC
  = 100ppm/C
  = 0.0001%/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Gain K?

Apply Difference Method:
 S = (∆K/K) / (∆R/R)
where
 ∆K/K = (K'-K)/K
K = R2/R1+1
R2 = 40k
R1 =10k

K = 40k/10k+1
   = 5.0
K'=40k*1.01/10k+1
   = 5.04

∆R/R = 0.01

S = (∆K/K) / (∆R/R)
   = +0.8
S = 0.8
Calc Gain Error
at Analysis Node
  Initial:  ∆K/K = e * S
  Drift:   ∆K/K = e * ∆T * S
∆K/K
 = 0.1% * 0.8
 = 0.08%
∆K/K
 = 100ppm/C*30C*0.8
 = 2400ppm
 = 0.24%
Normailzed gain errors can be referred to input as-is, no RTI calc needed.    

 

RESISTOR R1
 

Description Initial Errors Drift Errors
Error Source: e R1_Tol
 = 0.1%
R1_TC
  = 100ppm/C
  = 0.0001%/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Gain K?

Apply Difference Method:
 S = (∆K/K) / (∆R/R)
where
 ∆K/K = (K'-K)/K
K = R2/R1+1
R2 = 40k
R1 =10k

K = 40k/10k+1
   = 10.0
K'=40k/(10k*1.01)+1
   = 4.96

∆R/R = 0.01

S = (∆K/K) / (∆R/R)
   = -0.8
S = -0.8
Calc Gain Error
at Analysis Node
  Initial:  ∆K/K = e * S
  Drift:   ∆K/K = e * ∆T * S
∆K/K
 = 0.1%*-0.8
 = -0.08%
∆K/K
 = 100ppm/C*30C*-0.8
 = -2400ppm
 = -0.24%
Normalized gain errors can be referred to input as-is, no RTI calc needed.    

 

SUMMARY

Let's review the Gain & Offset errors.

Description Initial (V) Drift (V)
OFFSET ERRORS    
voff, Input Offset Voltage
ibp, Input Bias Current (Pos)
ibn, Input Bias Current (Neg)
1.000 mV
0.005 mV
-0.080 mV
0.300 mV
0.015 mV
-0.240 mV
GAIN ERRORS    
R2_Tol
R1_Tol
0.08 %
-0.08 %
0.24 %
-0.24 %

 

TOTAL OFFSET ERROR

Calculate the total using Worst Case Analysis. WCA assumes the most unfavorable conditions: all errors at their maximum limit AND in the same polarity.

Does the Total Error fly under the Max Error Budget (Requirements)?

 

TOTAL GAIN ERROR

Calculate the total using Worst Case Analysis.

Does the Total Error fly under the Max Error Budget (Requirements)?

 

EBA WITH EXCEL

An Excel file was created to implement the error budget analysis.

pic

3 Worksheets

Worksheet Enter Calculate
CIRCUIT CALC Circuit values Signal gains, levels and error Sensitivities
OFFSET Offset error sources Offset errors and totals
GAIN Gain error Sources Gain errors and totals

While 3 worksheets seems over-the-top for smaller circuits, you'll find a big advantage when analyzing more complex circuits or multi-stage systems!

 

Try the hands-on spreadsheet!

 

NOTES, IDEAS...

 

Back to EBA Series