eCircuit  Center 
Error Budget Analysis

About SPICE | SPICE Basics | Running SPICE | CIRCUIT COLLECTION
SPICE Commands | SPICE Downloads | About | Contact | Home

Instrumentation Amplifier
Error Analysis

Step-by-Step


pic

 

While the popular App Note AN-539 (Analog Devices) nicely describes and accounts for the AD623's errors, it's light on the theory and strategy behind the analysis equations. We'll do a teardown of this critical and challenging analysis. You'll get

Learn more at EBA Series

 

AN-539

You'll find excellent descriptions of the errors sources in this App Note from Analog Devices. The actual errors are tabulated for an easy read of the results. However, the calculations are inserted into the same table without much insight. This tutorial walks through each error in an easy step-by-step approach.

pic

 

OFFSET AND GAIN ERRORS

What are the basic definitions for Offset and Gain Errors of an amplifier block?

 

MAX ERROR BUDGET

You can write the max error budget (or target spec) multiple ways. While not provided in the App Note, we'll specify a reasonable one for this analysis. Note: Sensor Full-Scale (FS) output = 20mV.

 

INSTRUMENTATION AMP

Schematic with Error Sources

pic

 

Conditions and Assumptions

Temperature

Sensor

Amplifier Device

Errors

 

OFFSET ERRORS

The Inst Amp nicely showcases the analysis method for both input and output errors. The method also shows the approach for noise and non-linearity errors.

While the steps may seem more detailed than needed for simpler errors, the value of creating a systematic approach can pay off when analyzing more complex, multi-stage designs.

INPUT OFFSET VOLTAGE
 

Description Initial Errors Drift Errors
Error Source: e voff = 0.1mV voff_TC = 1uV/C
Pick Analysis Node: Va vp vp
Calc Sensitivity: S
How does e impact Va?
S = vp / voff = 1 S = vp / voff = 1
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 0.1mV * 1
Voffset
 = 1uV/C * 60C * 1
 = 0.060 mV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vp = 1 Ka = vin/vp = 1
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 0.1mV / 1
 = 0.1mV
voffset_RTI
 = 0.060mV/ 1
 = 0.060mV

 

OUTPUT OFFSET VOLTAGE
 

Description Initial Errors Drift Errors
Error Source: e voff_vo = 0.5mV voff_vo_TC = 10uV/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Va?
S = vo / voff_vo = 1 S = vo / voff_vo = 1
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 0.5mV * 1
Voffset
 = 10uV/C * 60C * 1
 = 0.60 mV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/voff_vo
 = Rg_int / Rg_ext
 = 89.5
Ka = vin/voff_vo
 = Rg_int / Rg_ext
 = 89.5
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 0.5mV / 89.5
 = 5.6uV
voffset_RTI
 = 0.6mV/ 89.5
 = 6.7uV

 

INPUT OFFSET BIAS CURRENT
 

Description Initial Errors Drift Errors
Error Source: e iboff = 2nA iboff_TC = 5pA/C
Pick Analysis Node: Va vp-vn vp-vn
Calc Sensitivity: S
How does e impact Va?
S = (vp-vn) / iboff
= 1/2*(Ra||Rb+Rc||Rd)
= 1/2*(175+175)
= 175
S = (vp-vn) / iboff
 = 175
Calc Offset Error at Analysis Node
  Initial:  Voffset = e * S
  Drift:   Voffset = e * T * S
Voffset
 = 2nA * 175
 = 0.35uV
Voffset
 = 5pA/C * 60C * 175
 = 0.11uV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = Vin/vp = 1 Ka = Vin/vp = 1
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 0.35uV / 1
 = 0.35uV
voffset_RTI
 = 0.11uV/ 1
 = 0.11uV

 

OUTPUT NON-LINEARITY
 

Description Calc Errors
Error Source: e
(device spec at vo=4V)
vnonlin_vo
 = 50ppm * 4V
 = 0.2mV
Pick Analysis Node: Va vo
Calc Sensitivity: S
How does e impact Va?
S = vo/vnonlin_vo = 1
Calc Offset Error at Analysis Node:
  ∆
Voffset = e * S
Voffset
 = 0.2mV * 1
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vo
 = Rg_int/Rg_ex + 1
 = 89.5
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 0.2mV / 89.5
 = 2.2uV

 

INPUT VOLTAGE NOISE
 

Description Calc Errors
Error Source: e
(device spec at 0.1 to 10Hz)
vnoise
 = 2.5uVp-p
 = 1.25uVp
Pick Analysis Node: Va vp
Calc Sensitivity: S
How does e impact Va?
S = vp / vnoise = 1
Calc Offset Error at Analysis Node:  Voffset = e * S Voffset
 = 1.25uVp * 1
 = 1.25uV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vnoise = 1
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 1.25uV/1
 = 1.25uV

 

INPUT COMMON-MODE REJECTION ERROR
 

Description Calc Errors
Error Source: e vcmr = vcm*CMRR

CMRR
 = 105dB
 = 10-105/20 = 5.6e-6
Pick Analysis Node: Va vp
Calc Sensitivity: S
How does e impact Va?
S = vp/vcmr = 1
Calc Offset Error
Special Case:
Voffset = e * Vcm * S
Voffset
 = 5.6e-6 * 2.5V * 1
 = 14uV
Calc Gain from
Input to Analysis Node:
  Ka = Va / Vin
Ka = vin/vcmr = 1
Calc Error RTI
(Referred-to-Input):
  voffset_RTI = voffset / Ka
voffset_RTI
 = 14uV/1
 = 14uV

 

GAIN ERRORS

The differential signal gain is defined by

pic

Gain errors often require more effort when calculating the Sensitivity S. You need to first write the gain equation and then apply calculus (Difference Method) to find S.

AN-539 skips the S calculation for gain altogether rounding it up to 1. But this only holds for high gain cases! For lower gains you could over estimate the Sensitivity (and Errors), so better to explicitly calculate S.

INTERNAL GAIN RESISTOR

Description Initial Errors Drift Errors
Error Source: e Rg_int_Tol
  = 0.35%
Rg_int_TC
  = 50ppm/C
  = 0.0001%/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Gain K?

Apply Difference Method:
 S = (∆K/K) / (∆R/R)
where
 ∆K/K = (K'-K)/K
K = Rg_int/Rg_ext+1
Rg_int = 100k
Rg_ext = 1.13k

K = 100k/1.13k+1
   = 89.5
K'=100k*1.01/1.13k+1
   = 90.4

∆R/R = 0.01

S = (∆K/K) / (∆R/R)
   = +0.98
S = +0.98
Calc Gain Error
at Analysis Node
  Initial:  ∆K/K = e * S
  Drift:   ∆K/K = e * ∆T * S
∆K/K
 = 0.35% * 0.98
 = 0.34%
∆K/K
 = 50ppm/C*60C*0.98
 = 2940ppm
 = 0.29%
Gain errors can be referred
to input node as-is, no RTI calc needed.
   

 

EXTERNAL GAIN RESISTOR
 

Description Initial Errors Drift Errors
Error Source: e Rg_ext_Tol
  = 0.1%
Rg_ext_TC
  = 10ppm/C
  = 0.0001%/C
Pick Analysis Node: Va vo vo
Calc Sensitivity: S
How does e impact Gain K?

Apply Difference Method:
 S = (∆K/K) / (∆R/R)
where
 ∆K/K = (K'-K)/K
K = Rg_int/Rg_ext+1
Rg_int = 100k
Rg_ext = 1.13k


K = 100k/1.13k+1
   = 89.5
K'=100k/(1.13k*1.01)+1
   = 88.6

∆R/R = 0.01

S = (∆K/K) / (∆R/R)
   = -0.98
S = -0.98
Calc Gain Error
at Analysis Node
  Initial:  ∆K/K = e * S
  Drift:   ∆K/K = e * ∆T * S
∆K/K
 = 0.1% * -0.98
 = -0.099%
∆K/K
 = 10ppm/C*60C*-0.98
 = -593ppm
 = -0.059%
Normalized gain errors can be referred to input node as-is, no RTI calc needed.    

 

SUMMARY

Let's view the Gain & Offset errors as well which are Calibratable or not.

Description Error (V) (ppm)
OFFSET INITIAL    ( CALIBRATABLE )    
Input Offset Voltage
Output Offset Voltage
Input Offset Bias Current
Input CMR
100 uV
6 uV
0.4 uV
14 uV
5000
279
18
703
OFFSET DRIFT, OTHER  (UN-CALIBRATABLE)    
Input Offset Voltage Drift
Output Offset Voltage Drift
Input Offset Bias Current Drift
Input Voltage Noise
Output Non-Linearity
60 uV
7 uV
0.1 uV
1 uV
2.2 uV
3000
335
3
38
112
GAIN INITIAL      ( CALIBRATABLE )    
Rg_int_Tol
Rg_ext_Tol
0.35%
-0.098%
3461
-979
GAIN DRIFT, OTHER  (UN-CALIBRATABLE)    
Rg_int_TC
Rg_ext_TC
0.28 %
-0.059 %
2966
-587

 

TOTALS

Errors are totalled as Worst Case (sum absolute values).

Total Error - No Cal

Total Error - With Cal (Drift, Other Errors only)

 

EBA WITH EXCEL

An Excel file was created to implement the error budget analysis.

pic

3 Worksheets

Worksheet Enter Calculate
CIRCUIT CALC Circuit values Signal gains and error sensitivities
OFFSET Offset error sources Offset errors and totals
GAIN Gain error Sources Gain errors and totals

While 3 worksheets seems over-the-top for smaller circuits, you'll find a big advantage when analyzing more complex circuits or multi-stage systems!

The Excel file also creates a nice graph displaying error contributions at a glance.

pic

Dive into the hands-on spreadsheet!

 

NOTES, IDEAS...

REFERENCES

  1. AN-539, Errors and Error Budget Analysis in Instrumentation Amplifier Applications, Analog Devices Inc (ADI).
  2. AD623, Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier, Datasheet, ADI.

 

Back to EBA Series