eCircuit  Center 
Source Measure Unit Series

About SPICE | SPICE Basics | Running SPICE | CIRCUIT COLLECTION
SPICE Commands | SPICE Downloads | About | Contact | Home

SMU - Zener Diode Test

How Can You Verify the Device Meets Spec?


  pic

 
Download SPICE Netlist or LTSPICE Schematic
Right Click on filename, select "Save link as..."


Suppose you've been asked to test a zener diode given only its datasheet! How will you design the tests given your SMU?

The answer lies in the datasheet's parameters and conditions. You'll configure some hands-on SPICE simulations to see if a 2.7V Zener Diode will fall into the PASS or FAIL bin.

   Get a refresh of the SMU Circuit

   Back to the SMU Series

2.7V ZENER DIODE

DATASHEET

You're given a datasheet for the 2.7V 250mW Zener diode.

pic

What's your strategy to verfiy these behaviors?

pic

V-I PLOT

A V-I plot helps us visualize key behaviors on the zener curve.

pic

 

TEST STRATEGY

How is each parameter tested? The datasheet points the way! For example, the Zener Voltage is specified as

    VZ @ IZ

Which is simply a short-hand notation for

   Measure Parameter @ Force Condition 

Let's create four tests from the datasheet specifications.

 
ZENER VOLTAGE

Voltage in the reverse breakdown region.

Force Conditon FI = -5 mA
Measure ParameterMV
Check Test Limitsif 2.57V < | MV | < 2.84V
then PASS, else FAIL

 
REVERSE LEAKAGE

Leakage current in the reverse region before breakdown.

Force Conditon FV = -1V
Measure ParameterMI
Check Test Limitsif | MI | < 18uA
then PASS, else FAIL

 
FORWARD VOLTAGE

Forward voltage acting as a typical diode.

Force Conditon FI = +10 mA
Measure ParameterMV
Check Test Limitsif |MV| < 1.0V
then PASS, else FAIL

 
ZENER IMPEDANCE

The effective resistance in the reverse breakdown region.

    Z = ΔV/ΔI
      = (MV2 - MV1)/(FV2 - FV1)

where MV1 is the zener voltage measured previously at FI1 = -5mA.

Force Conditon FI2 = -6mA
Measure ParameterMV2
Check Test LimitsCalc Z = (MV2-MV1)/(FI2-FI1)
if | Z | < 94 ohms
then PASS, else FAIL

 

SMU CIRCUIT

Here's a quick overview of the operating ranges of the SMU circuit:

 

SIMULATION

The diode model parameters represent a 2.7V Zener.

Each of the four tests is defined by its own PARAM statement.

  1. FORWARD VOLTAGE
       .param fmode=5V FI=0.01  set=FI/0.01A*5V  Rs=1k
     
  2. ZENER (REVERSE) VOLTAGE
       .param fmode=5V FI=-0.005  set=FI/0.01A*5V  Rs=1k
     
  3. LEAKAGE CURRENT
       .param fmode=0V FV=-1V set=FV Rs=1k
     
  4. ZENER IMPEDANCE
       .param fmode=5V FI=-0.006  set=FI/0.01A*5V  Rs=1k

Enable the relevant PARAM before running each test.

Run a TRAN simulation of SMU-FVFI-ciruit-zener-1.cir (or *.asc) with the proper PARAMs for each test below. Add trace v(mv) and then v(mi) in a separate window.

 FORWARD VOLTAGE   Set the .PARAMs for the Zener Voltage Test. After the current settles to FI = 10mA, read the zener voltage v(mv). Does the result fall within the datasheet limit?  | MV | < 1.0V

 ZENER VOLTAGE   Set the .PARAMs for the Zener Voltage Test. After the current settles to FI = -5mA, read the zener reverse voltage -v(mv). Does the result fall within the datasheet limits?  2.57V < | MV | < 2.84V

 REVERSE CURRENT   Set the .PARAMs for the Reverse Current Test and run a TRAN simulation. After the voltage settles to FV = -1V, read the current voltage -v(mi). Does the result fall within the datasheet limit?  | MI | < 18uA

 ZENER IMPEDANCE   Set the .PARAMs for the Zener Voltage Test and run a TRAN simulation. After the current settles to FI = -0.006A, read the voltage v(mv) as MV2. Now calculate the Zener Impedance (Resistance) as using Zener Voltage result above as MV1.

   Z = ( MV2 - MV1 ) / ( 6mA - 5mA )

Does the result fall within the datasheet limit?  | Z | < 94 ohms

 

SPICE NETLIST

Download SPICE Netlist or LTSPICE Schematic
Right Click on filename, select "Save link as..."

* SMU-FVFI-circuit-zener-1.cir
*
* Parameters
*
* Zener Voltage
.param fmode=5V FI=-0.005 set=FI/0.01*5V Rs=100
*
* Forward Voltage:
*.param fmode=5V FI=0.010 set=FI/0.01A*5V Rs=100
*
* Reverse Leakage
*.param fmode=0V FV=-1.0 set=FV Rs=100
*
* Zener Impedance
*.param fmode=5V FI=-0.006 set=FI/0.01*5V Rs=100
*
*
* Set Point
V_SET vset 0 PWL(0us 0 1us {-set})
*
* Error Amp
R1 vset  N002  10k
R2 N002  vfb   10k
R3 error N002  10k
XU1 N002 0 error opamp1
*
* Controller (Integrator)
Rint N001  error 10k
Cint Vctl  N001  1nF
Rd1  Vctl  N001  10Meg
XU2  N001 0 Vctl opamp1
*
* Output Amp
R4  N003   Vctl  10k
R5  Va     N003  10k
XU3 N003 0 Va opamp1
*
* Current Sense
Rs  Va     Vo   {Rs}
*
* Device Under Test
DZ1  Vo 0  DZ2V7
.model DZ2V7 D(Is=16u Rs=70 Bv=2.2 Ibv=5u)
*
* INST AMP MI
XU4  Vo Va v_mi  inamp1 Rg=12.35k
*
* INST AMP MV
XU5  0 Vo  v_mv  inamp1 Rg=1e12
*
* Force Mode
Vmode fmode 0 {fmode}
*
* Feedback Mux
S1  v_mv vfb   fmode 0   SW1
S2  v_mi vfb   fmode 0   SW2
*
* Measure Voltage and Current
E_MV  MV 0  v_mv 0  { 1.0 }
E_MI  MI 0  v_mi 0  {0.01 / 5}
*
* Simulation
.tran 200us
*
* Opamp Model ******************************
*  pin order      in- in+ out
.SUBCKT OPAMP1    1  2   3
EGAIN     3 0   2 1     1000K
.ENDS
*
* Inst Amp Model **************************
*  pin order      in- in+ out
.SUBCKT INAMP1    1  2   3
EGAIN     3 0    value={ (V(2)-V(1)) * (1+49.4k/Rg) }
.ENDS
*
* Switch Models **************************
.model SW1 SW(Ron=1 Roff=1Meg  Von=0V Voff=5V )
.model SW2 SW(Ron=1 Roff=1Meg  Von=5V Voff=0V )
*
.end

 

Back to SMU Series