About SPICE |
SPICE Basics |
Running SPICE |
CIRCUIT COLLECTION
SPICE Commands |
SPICE Downloads |
About |
Contact |
Home
Download SPICE Netlist or LTSPICE
Schematic
Right Click on filename, select "Save link as..."
Suppose you've been asked to test a zener diode given only its
datasheet! How will you design the tests given your SMU?
The answer lies in the datasheet's parameters and conditions. You'll
configure some hands-on SPICE simulations to see if a 2.7V Zener Diode will fall into
the PASS or FAIL bin.
Get a refresh of the SMU Circuit
Back to the SMU Series
DATASHEET
You're given a datasheet for the 2.7V 250mW Zener diode.
What's your strategy to verfiy these behaviors?
V-I PLOT
A V-I plot helps us visualize key behaviors on the zener curve.
How is each parameter tested? The datasheet points the way! For example, the Zener Voltage is specified as
VZ @ IZ
Which is simply a short-hand notation for
Measure Parameter @ Force Condition
Let's create four tests from the datasheet specifications.
ZENER VOLTAGE
Voltage in the reverse breakdown region.
Force Conditon FI = -5 mA Measure Parameter MV Check Test Limits if 2.57V < | MV | < 2.84V
then PASS, else FAIL
REVERSE LEAKAGE
Leakage current in the reverse region before breakdown.
Force Conditon FV = -1V Measure Parameter MI Check Test Limits if | MI | < 18uA
then PASS, else FAIL
FORWARD VOLTAGE
Forward voltage acting as a typical diode.
Force Conditon FI = +10 mA Measure Parameter MV Check Test Limits if |MV| < 1.0V
then PASS, else FAIL
ZENER IMPEDANCE
The effective resistance in the reverse breakdown region.
Z = ΔV/ΔI
= (MV2 - MV1)/(FV2 - FV1)
where MV1 is the zener voltage measured previously at FI1 = -5mA.
Force Conditon FI2 = -6mA Measure Parameter MV2 Check Test Limits Calc Z = (MV2-MV1)/(FI2-FI1)
if | Z | < 94 ohms
then PASS, else FAIL
Here's a quick overview of the operating ranges of the SMU circuit:
The diode model parameters represent a 2.7V Zener.
Each of the four tests is defined by its own PARAM statement.
Enable the relevant PARAM before running each test.
Run a TRAN simulation of SMU-FVFI-ciruit-zener-1.cir (or *.asc) with the proper PARAMs for each test below. Add trace v(mv) and then v(mi) in a separate window.
FORWARD VOLTAGE Set the .PARAMs for the Zener Voltage Test. After the current settles to FI = 10mA, read the zener voltage v(mv). Does the result fall within the datasheet limit? | MV | < 1.0V
ZENER VOLTAGE Set the .PARAMs for the Zener Voltage Test. After the current settles to FI = -5mA, read the zener reverse voltage -v(mv). Does the result fall within the datasheet limits? 2.57V < | MV | < 2.84V
REVERSE CURRENT Set the .PARAMs for the Reverse Current Test and run a TRAN simulation. After the voltage settles to FV = -1V, read the current voltage -v(mi). Does the result fall within the datasheet limit? | MI | < 18uA
ZENER IMPEDANCE Set the .PARAMs for the Zener Voltage Test and run a TRAN simulation. After the current settles to FI = -0.006A, read the voltage v(mv) as MV2. Now calculate the Zener Impedance (Resistance) as using Zener Voltage result above as MV1.
Z = ( MV2 - MV1 ) / ( 6mA - 5mA )
Does the result fall within the datasheet limit? | Z | < 94 ohms
Download SPICE Netlist or LTSPICE
Schematic
Right Click on filename, select "Save link as..."
* SMU-FVFI-circuit-zener-1.cir
*
* Parameters
*
* Zener Voltage
.param fmode=5V FI=-0.005 set=FI/0.01*5V Rs=100
*
* Forward Voltage:
*.param fmode=5V FI=0.010 set=FI/0.01A*5V Rs=100
*
* Reverse Leakage
*.param fmode=0V FV=-1.0 set=FV Rs=100
*
* Zener Impedance
*.param fmode=5V FI=-0.006 set=FI/0.01*5V Rs=100
*
*
* Set Point
V_SET vset 0 PWL(0us 0 1us {-set})
*
* Error Amp
R1 vset N002 10k
R2 N002 vfb 10k
R3 error N002 10k
XU1 N002 0 error opamp1
*
* Controller (Integrator)
Rint N001 error 10k
Cint Vctl N001 1nF
Rd1 Vctl N001 10Meg
XU2 N001 0 Vctl opamp1
*
* Output Amp
R4 N003 Vctl 10k
R5 Va N003 10k
XU3 N003 0 Va opamp1
*
* Current Sense
Rs Va Vo {Rs}
*
* Device Under Test
DZ1 Vo 0 DZ2V7
.model DZ2V7 D(Is=16u Rs=70 Bv=2.2 Ibv=5u)
*
* INST AMP MI
XU4 Vo Va v_mi inamp1 Rg=12.35k
*
* INST AMP MV
XU5 0 Vo v_mv inamp1 Rg=1e12
*
* Force Mode
Vmode fmode 0 {fmode}
*
* Feedback Mux
S1 v_mv vfb fmode 0 SW1
S2 v_mi vfb fmode 0 SW2
*
* Measure Voltage and Current
E_MV MV 0 v_mv 0 { 1.0 }
E_MI MI 0 v_mi 0 {0.01 / 5}
*
* Simulation
.tran 200us
*
* Opamp Model ******************************
* pin order in- in+ out
.SUBCKT OPAMP1 1 2 3
EGAIN 3 0 2 1 1000K
.ENDS
*
* Inst Amp Model **************************
* pin order in- in+ out
.SUBCKT INAMP1 1 2 3
EGAIN 3 0 value={ (V(2)-V(1)) * (1+49.4k/Rg) }
.ENDS
*
* Switch Models **************************
.model SW1 SW(Ron=1 Roff=1Meg Von=0V Voff=5V )
.model SW2 SW(Ron=1 Roff=1Meg Von=5V Voff=0V )
*
.end
Back to SMU Series